Impact of nucleation on global CCN
نویسندگان
چکیده
Cloud condensation nuclei (CCN) are derived from particles emitted directly into the atmosphere (primary emissions) or from the growth of nanometer-sized particles nucleated in the atmosphere. It is important to separate these two sources because they respond in different ways to gas and particle emission control strategies and environmental changes. Here, we use a global aerosol microphysics model to quantify the contribution of primary and nucleated particles to global CCN. The model considers primary emissions of sea spray, sulfate and carbonaceous particles, and nucleation processes appropriate for the free troposphere and boundary layer. We estimate that 45% of global low-level cloud CCN at 0.2% supersaturation are secondary aerosol derived from nucleation (ranging between 31–49% taking into account uncertainties in primary emissions and nucleation rates), with the remainder from primary emissions. The model suggests that 35% of CCN (0.2%) in global low-level clouds were created in the free and upper troposphere. In the marine boundary layer 55% of CCN (0.2%) are from nucleation, with 45% entrained from the free troposphere and 10% nucleated directly in the boundary layer. Combinations of model runs show that primary and nucleated CCN are non-linearly coupled. In particular, boundary layer nucleated CCN are strongly suppressed by both primary emissions and entrainment of particles nucleated in the free troposphere. Elimination of all primary emissions reduces global CCN (0.2%) by only 20% and elimination of upper tropospheric nucleation reduces CCN (0.2%) by only 12% because of the increased contribution from boundary layer nucleation. Correspondence to: J. Merikanto ([email protected])
منابع مشابه
Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation
Aerosol nucleation is an important source of particle number in the atmosphere. However, in order to become cloud condensation nuclei (CCN), freshly nucleated particles must undergo significant condensational growth while avoiding coagulational scavenging. In an effort to quantify the contribution of nucleation to CCN, this work uses the GEOS-Chem-TOMAS global aerosol model to calculate changes...
متن کاملAnalysis of feedbacks between nucleation rate , survival 1 probability and cloud condensation nuclei formation
10 Aerosol nucleation is an important source of particle number in the atmosphere. However, in 11 order to become cloud condensation nuclei (CCN), freshly nucleated particles must undergo 12 significant condensational growth while avoiding coagulational scavenging. In an effort to 13 quantify the contribution of nucleation to CCN, this work uses the GEOS-Chem-TOMAS 14 global aerosol model to ca...
متن کاملFormation and growth of nucleated particles into cloud condensation nuclei: model–measurement comparison
Aerosol nucleation occurs frequently in the atmosphere and is an important source of particle number. Observations suggest that nucleated particles are capable of growing to sufficiently large sizes that they act as cloud condensation nuclei (CCN), but some global models have reported that CCN concentrations are only modestly sensitive to large changes in nucleation rates. Here we present a nov...
متن کاملThe contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates
Primary biological aerosol particles (PBAPs) may play an important role in aerosol–climate interactions, in particular by affecting ice formation in mixed phase clouds. However, the role of PBAPs is poorly understood because the sources and distribution of PBAPs in the atmosphere are not well quantified. Here we include emissions of fungal spores and bacteria in a global aerosol microphysics mo...
متن کاملA global process-based study of marine CCN trends and variability
Low-level clouds have a strong climate-cooling effect in oceanic regions due to the much lower albedo of the underlying sea surface. Marine clouds typically have low droplet concentrations, making their radiative properties susceptible to changes in cloud condensation nucleus (CCN) concentrations. Here, we use the global aerosol model GLOMAP to investigate the processes that determine variation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009